ベイズの定理

ベイズの定理
https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%BA%E3%81%AE%E5%AE%9A%E7%90%86

許容決定規則 ベイズ効率性 ベイズ確率 確率の解釈 ベイズの定理 ベイズ因子 ベイズ推定 ベイジアンネットワーク 事前確率 事後確率 尤度 共役事前分布 事後予測分布 ハイパーパラメータ ハイパーパラメータの事前分布 等確率の原理 最大エントロピー原理 経験ベイズ法 クロムウェルの差止め規則 ベルンシュテイン=フォン・ミーゼス定理 シュワルツ情報量規準 信用区間 最大事後確率推定 根源的蓋然論

『出典: フリー百科事典『ウィキペディア(Wikipedia)』
統計学
ベイズ統計学
理論

技法

ベイズ線形回帰 ベイズ推定量 近似ベイズ計算 マルコフ連鎖モンテカルロ法

表話編歴

確率論

確率の公理

確率空間 標本空間 根元事象 事象 確率変数 確率測度

余事象 結合確立 周辺確率 条件付確率

独立 条件付き独立 全確率の法則 大数の法則 ベイズの定理 ブールの不等式

ベン図 樹形図

表話編歴

トーマス・ベイズ(c. 1701–1761)

確率論や統計学において、トーマス・ベイズ牧師にちなんで名付けられたベイズの定理(ベイズのていり、英: Bayes’ theorem)、ベイズの法則、最近ではベイズ・プライスの定理[1]とは、ある事象に関連する可能性のある条件についての事前の知識に基づいて、その事象の確率を記述するものである[2]。

例えば、健康問題の発生リスクが年齢とともに増加することが知られている場合、ベイズの定理により、ある年齢の個人のリスクを、単にその個人が集団全体の典型的な例であると仮定するよりも、(年齢を条件として)より正確に評価することができる。

ベイズの定理を応用したものに、推計統計学の手法の一つであるベイズ推定がある。

その際、定理に関わる確率は、異なる確率解釈をすることができる。

ベイズ確率の解釈では、定理は確率として表現された信念の度合いが、関連する証拠の入手可能性を考慮して合理的にどのように変化すべきかを表現している。ベイジアン推論は、ベイズ統計学の基本である。

2つの樹形模様を重ね合せて表現したベイズの定理。

ベイズの定理を3次元で描いた説明図。

ピエール=シモン・ラプラス(1745–1827)

定理の説明

ベイズの定理は数学的には次の式で表される[3]:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) {\displaystyle P(A\mid B)={\frac {P(B\mid A)\,P(A)}{P(B)}}}

ここで、 A {\displaystyle A} そして B {\displaystyle B} は事象であり、 P ( B ) ≠ 0 {\displaystyle P(B)\neq 0} である。

P ( A ∣ B ) {\displaystyle P(A\mid B)} は条件付き確率であり、 B {\displaystyle B} が真であるとき事象 A {\displaystyle A} が発生する確率である。

B {\displaystyle B} が与えられたときの A {\displaystyle A} の事後確率ともいう。
P ( B ∣ A ) {\displaystyle P(B\mid A)} もまた条件付き確率でもあり、 A {\displaystyle A} が 真である場合に B {\displaystyle B} が発生する確率である。

また、 P ( B ∣ A ) = L ( A ∣ B ) {\displaystyle P(B\mid A)=L(A\mid B)} であることから、固定された B {\displaystyle B} に対する A {\displaystyle A} の尤度とも解釈できる。

P ( A ) {\displaystyle P(A)} と P ( B ) {\displaystyle P(B)} は、与えられた条件なしに A {\displaystyle A} と B {\displaystyle B} がそれぞれ観測される確率で、周辺確率や事前確率と呼ばれている。

A {\displaystyle A}そして B {\displaystyle B}は別の事象である必要がある。

ベイズの定理の証明は P(A,B)=P(A|B)P(B)=P(B|A)P(A) から出る。

ベイズ推定
詳細は「ベイズ推定」を参照

ベイズの定理と組み合わせて確率的推論を行う方法がラプラスによって始められ、現在言うところのベイズ統計学の端緒となった。事象の確率という考え方を採用する特徴がある。

現在は例えば、迷惑メールの発見・分類といった作業のコンピュータを用いた自動化(フィルタリング)等のふるい分けにも利用されている。

概要

事象Bのベイズ確率について、

P(B) = 事象 A が起きる前の、事象 B の確率(事前確率, prior probability)

P(B|A) = 事象 A が起きた後での、事象 B の確率(事後確率,条件付き確率, posterior probability,conditional probability)

とする。 ベイズの定理を使えば、事後確率 P(B|A) は下記に従って計算される。

P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) {\displaystyle P(B\mid A)={\frac {P(A\mid B)\,P(B)}{P(A)}}}

すなわち、事象Aに関するある結果(データ)が得られたとすると、それを反映し、尤度 P(A|B) の乗算によって、事象 B の確率は事前確率から事後確率へと更新される。

なお事象 B の確率の観点からは、P(A) は規格化定数としての意味しかないため、しばしば省略される。つまり事後確率は事前確率と尤度の積に比例する:

P ( B ∣ A ) ∝ P ( A ∣ B ) P ( B ) = P ( A , B ) {\displaystyle P(B\mid A)\propto P(A\mid B)\,P(B)=P(A,B)}

ベイズ統計学(およびベイズ決定理論)は上記の手続きにその基礎をおき、名前の由来ともなっている[要出典]。

批判

ベイズ統計学では、事象の確率という考え方を採用し、必ずしも頻度には基づかない確率を「確率」として見なす。

またベイズの定理を用い、事前確率及び尤度を仮定した下で事後確率を与える、という相対的なメカニズムを主張している。

したがって事後確率の計算結果の信憑性や有用性は、事前分布と尤度の設定にかかっており、慎重を期すことが必要である。

これはベイズ統計学が、不確実性を含む問題を人によって異なる確率を用いて定式化することを許容する主観確率 (subjective probability) という立場をとっていることによる。

この立場はまだ解析対象となっていない新たな問題へのアプローチを可能にするという利点がある一方で、確率の決め方について客観性に欠けるという批判もある(客観確率)。
応用例

薬物検査

薬物検査の例を表す樹形図。記号U, Ū, +, − はそれぞれ使用者である、非使用者である、陽性である、陰性である事象を表す。

ある薬物の検査が感度99%かつ特異度99%だとしよう——つまり検査によって薬物の使用者のうち99%が陽性となり、非使用者のうち99%が陰性となると仮定する。

さらに社会の0.5%が薬物使用者であるとする。

無作為に選ばれた個人がこの検査で陽性だったとき、薬物使用者である確率はいくつか?ベイズの定理(と全確率の公式(英語版))から

P ( U ∣ + ) = P ( + ∣ U ) P ( U ) P ( + ) = P ( + ∣ U ) P ( U ) P ( + ∣ U ) P ( U ) + P ( + ∣ U ¯ ) P ( U ¯ ) = 0.99 × 0.005 0.99 × 0.005 + 0.01 × 0.995 ≈ 0.332 {\displaystyle {\begin{aligned}P({\text{U}}\mid {\text{+}})&={\frac {P({\text{+}}\mid {\text{U}})\,P({\text{U}})}{P(+)}}\\&={\frac {P({\text{+}}\mid {\text{U}})\,P({\text{U}})}{P({\text{+}}\mid {\text{U}})\,P({\text{U}})+P({\text{+}}\mid {\overline {\text{U}}})\,P({\overline {\text{U}}})}}\\&={\frac {0.99\times 0.005}{0.99\times 0.005+0.01\times 0.995}}\\&\approx 0.332\end{aligned}}}

個人の検査が陽性であるときでさえ、非使用者である可能性が使用者である可能性よりも高い。

(それでも検査結果が陽性であったという情報を反映して、事後確率 P ( U ∣ + ) ≈ 0.332 {\displaystyle P({\text{U}}\mid {\text{+}})\approx 0.332} は事前確率 P ( U ) = 0.005 {\displaystyle P({\text{U}})=0.005} よりも大幅に上昇している。)

つまり偽陽性の数は真陽性の数より多い。

これは非使用者が使用者に比べて多いからである。

たとえば、もし無作為に1000人が検査されるならば、995人の非使用者と5人の使用者がいると期待される。

995人の非使用者からは0.01 × 995 ≈ 10 人の偽陽性が期待される。

5人の使用者からは 0.99 × 5 ≈ 5人の真陽性が期待される。

よって陽性であると期待される15人のうち、5人のみが薬物使用者である。

この例における特異度の重要性が次の計算からわかる。

仮に感度が100%に上がり特異度が99%のままであれば陽性的中率は33.2%から33.4%に微増するに留まるが、感度が99%のままで特異度が99.5%に上がれば陽性的中率は49.9%に増加する。

脚注

^ Frame, Paul (2015). Liberty's Apostle. Wales: University of Wales Press. ISBN 978-1-78316-216-1 2021年2月23日閲覧。
^ Joyce, James (2003), Zalta, Edward N., ed., “Bayes' Theorem”, The Stanford Encyclopedia of Philosophy (Metaphysics Research Lab, Stanford University) 2020年1月17日閲覧。
^ Stuart, A.; Ord, K. (1994), Kendall's Advanced Theory of Statistics: Volume I—Distribution Theory, Edward Arnold, §8.7

参考文献

Bayes, Thomas; Price, Richard (1763). “An Essay towards solving a Problem in the Doctrine of Chance. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S.” (PDF). Philosophical Transactions of the Royal Society of London (Royal Society) 53 (0): 370–418. doi:10.1098/rstl.1763.0053.
Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B. (2014). Bayesian Data Analysis. Texts in Statistical Science Series (Third ed.). CRC Press. ISBN 978-1-4398-4095-5. MR3235677. Zbl 1279.62004
Stigler, Stephen M. (1986). The History of Statistics. The Belknap Press of Harvard University Press. ISBN 0-674-40340-1. MR0852410. Zbl 0656.62005

関連項目

R言語
マルコフ連鎖モンテカルロ法
確率論
人工知能
全確率の法則(英語版)
単純ベイズ分類器
ベイジアンフィルタ
ベイズ確率
ベイジアン計量経済学
ベイズ推定
ベイズ統計学
ベイズ確率
ベイジアンネットワーク
推計統計学
確率分布
尤度関数
尤度比検定
最尤法
最大エントロピー原理
陽性尤度比
陰性尤度比
尤度方程式
条件付き確率
決定木

外部リンク

世界大百科事典 第2版『ベイズの定理』 - コトバンク
Weisstein, Eric W. "Bayes' Theorem". mathworld.wolfram.com (英語).

表話編歴

確率論
確率の歴史

アンドレイ・コルモゴロフ トーマス・ベイズ アンドレイ・マルコフ ジョゼフ・L・ドゥーブ 伊藤清

確率の定義
客観確率

統計的確率 古典的確率 公理的確率

主観確率

ベイズ確率

確率の拡張

外確率 負の確率

基礎概念
モデル

試行 結果 事象 標本空間 確率測度 確率空間

確率変数

確率変数の収束

確率分布

離散確率分布 連続確率分布 同時分布 周辺分布 条件付き確率分布 独立同分布

関数

確率質量関数 確率密度関数 累積分布関数 特性関数

用語

独立 期待値 モーメント 条件付き確率 条件付き期待値

確率の解釈

ベルトランの逆説 3囚人問題 モンティ・ホール問題 サンクトペテルブルクのパラドックス 合接の誤謬 ギャンブラーの誤謬

問題

壺問題 クーポンコレクター問題

法則・定理

ベイズの定理 大数の法則 中心極限定理 コルモゴロフの0-1法則 デ・フィネッティの定理 ウィーナー=ヒンチンの定理

測度論

確率測度の拡張
    カラテオドリの拡張定理 E.ホップの拡張定理 コルモゴロフの拡張定理 ヴィタリの収束定理 優収束定理 ラプラス原理 スコロホッドの表現定理

確率微分方程式

伊藤の補題

確率過程

独立増分過程 定常過程 マルチンゲール マルコフ過程
    マルコフ性 マルコフ連鎖 マルコフ決定過程 部分観測マルコフ決定過程 マルコフ再生過程 ウィーナー過程
    ブラウン運動 幾何ブラウン運動 非整数ブラウン運動 ベルヌーイ過程 ガウス過程 自己相似過程 経験過程 中華料理店過程 オルンシュタイン=ウーレンベック過程

情報量

最大エントロピー原理 交差エントロピー 結合エントロピー カルバック・ライブラー情報量 相互情報量

応用
数理ファイナンス

ブラック–ショールズ方程式 確率的ボラティリティモデル

系統学

ベイズ法

カテゴリ カテゴリ
典拠管理データベース: 国立図書館 ウィキデータを編集

ドイツ

カテゴリ:

確率論ベイズ統計トーマス・ベイズ数学のエポニム数学に関する記事

最終更新 2024年2月25日 (日) 13:25 (日時は個人設定で未設定ならばUTC)。
テキストはクリエイティブ・コモンズ 表示-継承ライセンスのもとで利用できます。追加の条件が適用される場合があります。詳細については利用規約を参照してください。