AIは緻密な仕事が苦手? 営業で使うのがおすすめな理由

https://style.nikkei.com/article/DGXMZO63178800Y0A820C2000000

 ※ 何回も言ったが、「人工知能に、知能無し。」だ…。

 日本語の「造語機能」は、凄まじいものだと思うが、時々その「造語したもの」に逆に引きずられて、本質から外れたり、本質から遠く離れたところに連れていかれたりすることも、よくある…。
 「人工知能」という訳語を当てたことにより、人々はその「字面(じづら)」に引きずられて、「人間と同じような、知能を有するもの」と誤解する…。その動作原理からして、「考えたり」「知能を働かせたり」できようはずも無い…。
 使っているのが、単なる「電子計算機(電子演算機)」で、やっていることが、単なる「行列データの演算・変形」である以上、「知能」も「思考力」もへったくれも、あろうはずが無い…。


 この手の、「訳語を当てたがゆえの」本質とかけ離れたところに連れて行かれる例は、多々ある…。
 「function」も、その一つだ…。これに、「函数」という訳語を当てたところまでは、いい…。ある種の、「函(ハコ)」「なんらかの操作を加えるしかけ」というニュアンスが残っているからな…。しかし、「函」の漢字が、「教育漢字」から外れてしまったんで、使えなくなった…。そこで、「関数」という漢字を当てた…。こうなると、「比例・反比例」「一次関数」「二次関数」というものに引きずられて、本来の「入力すると、それに何らかの操作を加えて、結果を出力するもの」という「本質」が希薄になる…。
 日本人で、プログラミングがイマイチ苦手な向きが多い遠因の一つは、functionに「関数」の漢字を当てていることもあると、オレは思っている…。


 この手の、漢字の字面(じづら)ゆえの誤解の最たるものは、「交戦権」だ…。
『第9条
日本国民は、正義と秩序を基調とする国際平和を誠実に希求し、国権の発動たる戦争と、武力による威嚇又は武力の行使は、国際紛争を解決する手段としては、永久にこれを放棄する。
2.前項の目的を達するため、陸海空軍その他の戦力は、これを保持しない。国の交戦権は、これを認めない。
RENUNCIATION OF WAR Article 9.
Aspiring sincerely to an international peace based on justice and order, the Japanese people forever renounce war as a sovereign right of the nation and the threat or use of force as means of settling international disputes.
In order to accomplish the aim of the preceding paragraph, land, sea, and air forces, as well as other war potential, will never be maintained. The right of belligerency of the state will not be recognized.
[4]』とされている…。


 それで、「The right of belligerency of the state」の訳語を「国の交戦権」とした…。
 そういう訳語を当てたものだから、世間の人々は、「国家が交戦する権利」と解している人が殆んどだ…。極端なことを言う人だと、「敵国が侵攻してきても、これを撃退しようとして、「交戦する権利」は一切認められない。それが、憲法の趣旨だ!」などと言う人も出てくるしまつだ…。
 冗談じゃない…。そういう「腰の抜けた」ことで、一国の存立が図れるか…。「国家」というものは、今現在生きている人のためだけのものじゃない…。あなたたちの子・孫・その子孫、営々と継続していく子孫のためのものでもある…。
 幸い、学説の多数説、政府見解は、「国際法上交戦状態の国家にも、認められている種々の国際法上の権利」と解している…。
「船舶の臨検・拿捕、占領地行政等の権利など」と解するわけだな…。

『囲碁でも将棋でも天下無敵。世界最高の棋士をも打ち負かしてしまう人工知能(AI)。「AI」は、正確無比な手を指し続けます。しかし、それはあくまで、厳密に決められたルールがあるゲームの中の世界。いろんな想定外が起こる現実世界は、そう簡単ではありません。現実世界のAIは、実は結構いい加減で、緻密な仕事は苦手なんです。赤石雅典氏の近刊『Pythonで儲かるAIをつくる』(日経BP)を読むと、そんなAIの本当の実力が見えてきます。

◇   ◇   ◇

業務に本当に役立つAIを作るには?
本書の「儲(もう)かるAI」とは「業務に本当に役立つAI」のこと。そんなAIを作るには、AIの得意・不得意を把握しておくことが不可欠です。

AIを適用する分野で、著者の赤石氏がまず薦めるのが「営業」です。語弊を覚悟で言うと、営業という仕事がそもそも、いい加減なことがその理由です。

あわせて読みたい

コンピューターサイエンスを教養に 米大教授が講義

パソコンも計算間違い!?
「100%成功する営業」なんて、あり得ません。ダイレクトメールを使った営業なら、1件の受注を取るのに、数百件も数千件も送ることがあるでしょう。お得意さまに電話で新製品を売り込むときも、10件中1件成約すれば大成功というケースがあり得ます。

そもそも1割しか成功しない営業なのに、AIで既存の顧客リストをうまく絞り込んだら、成功率が2割に上がったとしましょう。AIを使っても「外れ」が8割もあったわけですが、営業成績は実に2倍になりました。AIの導入は、大成功です。

現在のAIで中心的な手法である「機械学習」は原理的に、正解が「100%」になることはあり得ません。過去のデータを基に予測するだけなので、必ず外れる場合があります。それでも、うまく最適化していくと、どんどん正解率を高められます。その点、営業のようにもともとの正解率が低い業務なら、正解率を高める余地が大きくなります。AIが「いい加減な仕事の方が得意」という理由がそこにあります。

「不良品を漏れなく探せ」は苦手
一方で、AIが苦手なのが「100%の精度を求められる」仕事です。典型的なのが、工場のラインにおける不良品の検出などで、「漏れなく見つけること」が目標になります。

AIで98%の精度を達成するのは、技術的にかなり困難ですが、仮にそれを達成できたとします。その場合でも、不良品の2%は見逃すことになります。それは業務的には認められず、結局AIの導入は断念するということになりがちです。

要するに、AIが得意なのは、どんな仕事なのでしょうか。「いい加減な仕事が得意」だけでは、よく分からないですね。

AIが得意な5種類の業務を厳選
そこで『Pythonで儲かるAIをつくる』では、基本的なAIの技術を使って成果を出せる業務を5種類に絞って、紹介します。一つめが営業です。ほかに、天候などで変わる売り上げの予測、お薦め商品の予測などをAIで実践します。

どの業務でも、AIで定番のプログラミング言語「Python」を使って、具体的なAIプログラムを作っていきます。本書のPythonプログラムは、PC上のブラウザーがあれば、面倒な導入作業なしにすぐに動かせます。Googleのクラウド上のPython実行環境「Colaboratory」を使うためです。

コードの1行1行を理解できなくても、ブラウザー上で動かしていくと、AIがどんな手順で何をやっていくのか、何ができるのかが分かってきます。それで、AIの得意・不得意が見えてくるのです。「もともとAIには向かない業務をAI化しようと大金を投じ、撃沈する」ようなことを避けられます。

AIを適用する際には、データをじっくり見ることから始める必要がありますが、Pythonを使えば、データの状態をビジュアルに確認できます。予測結果も同様です。そんな具体的なAI化の手順を紹介していきます。

Pythonで学習データや予測結果を可視化した例
実は本書のPythonプログラムは、本書のWebページ(https://github.com/makaishi2/profitable_ai_book_info)ですべて公開しています。Chromeブラウザー上ですぐに動かして、AIの動きを確認できます。

先ほど「100%を求められる仕事は苦手」とは言いましたが、病気の診断など、まさにミスが許されない領域にも、最先端のAIは果敢に挑戦しているところです。最先端は本書の範囲外なので収められませんでしたが、そうした仕事にAIを適用する基本的な手法についても、同じWebページで解説しています(併せて、ディープラーニングで画像認識をする例も紹介)。本書で5種類の業務をどのように解説しているのか、イメージがつかめます。

本書のWebページでもAIの実践事例を補足解説
「AIの得意・不得意を知りたい」「実際にPythonでAIを作ってみたい」という方は、ぜひ本書を手に取ってみてください。

(日経BP ラズパイマガジン 安東一真)』